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Abstract
We investigate three-body motion in three dimensions under the interaction
potential proportional to rα (α �= 0) or log r , where r represents the mutual
distance between bodies, with the following conditions: (I) the moment of
inertia is a non-zero constant, (II) the angular momentum is zero and (III)
one body is on the centre of mass at an instant. We prove that the motion
which satisfies conditions (I)–(III) with equal masses for α �= −2, 2, 4 is
impossible. And motions which satisfy the same conditions for α = 2, 4 are
solved explicitly. Shapes of these orbits are not figure-eight and these motions
have collision. Therefore, the moment of inertia for figure-eight choreography
for α �= −2 is proved to be inconstant along the orbit. We also prove that
the motion which satisfies conditions (I)–(III) with general masses under the
Newtonian potential α = −1 is impossible.

PACS numbers: 45.20.Dd, 45.50.Jf, 45.50.Pk, 95.10.Ce

1. Introduction

In 1970s, Saari formulated a conjecture [1, 2], which is now called ‘Saari’s conjecture’: In
the n-body problem under the Newtonian gravity, if the moment of inertia is constant then
the motion must be a relative equilibrium. Recently, three-body choreography, equal mass
three-body periodic motion on a planer closed curve on which each body chases each other,
was found by Moore [3], Chenciner, Montgomery [4] and Simó [5, 6]. This motion is now
called ‘three-body figure-eight choreography’. Simó noted that the moment of inertia was
not constant on figure-eight solution for the Newtonian potential, despite the relative variation
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along the orbit being small [7]. Inconstancy of the moment of inertia of figure-eight solution
is consistent with Saari’s conjecture.

On the other hand, it is well known that in the n-body problem under the attractive
potential proportional to r−2, where r is the mutual distance between bodies, the moment of
inertia I for any periodic motion must be constant. This is because the second derivative of
the moment of inertia with respect to time under this potential yields the Lagrange–Jacobi
identity d2I/dt2 = 2E, where E represents the total energy. Integrating this equation, we get
I = Et2 + c1t + c2 with integration constants c1 and c2. For any periodic motion under this
potential, therefore, the total energy must be zero and the moment of inertia must be constant.

Numerical evidence of existence of three-body figure-eight choreography is known under
the attractive interaction potential proportional to rα (α �= 0) with α < 2 or log r [3].
Then, Chenciner formulates a problem [8]: show that the moment of inertia of figure-eight
choreography stays constant only when α = −2. We call this problem Saari–Chenciner’s
problem. In this paper, we solved Saari–Chenciner’s problem.

Actually, we investigated the three-body motion in three dimensions under the attractive
interaction potential proportional to rα (α �= 0) or log r with the following conditions: (I) the
moment of inertia is a non-zero constant, (II) the angular momentum is zero and (III) one body
is on the centre of mass at an instant. We proved theorem 1: motion which satisfies conditions
(I)–(III) with equal masses under the potential α �= −2, 2, 4 is impossible.

We solved explicitly motions which satisfy conditions (I)–(III) with equal masses under
the potential α = 2 or 4, and show that these motions do not have figure-eight shape and have
collision. Since three-body figure-eight choreography satisfies conditions (II)–(III) with equal
masses and has no collision, the Saari–Chenciner problem is solved.

We also proved theorem 2: motion which satisfies conditions (I)–(III) with general masses
under the Newtonian potential α = −1 is impossible.

This paper is organized as follows. In section 2, we clarify the consequences of conditions
(I)–(III) for general masses and general α. Prescription of our proof of theorems 1 and 2 is
given in this section. In section 3, we treat the case of equal masses. In section 3.1, a proof
of theorem 1 is given. In section 3.2, we give motions explicitly which satisfy conditions
(I)–(III) with equal masses under the potential α = 2 or 4, and show that these solutions do
not have figure-eight shape, and have collision. In section 4, we treat the case with general
masses under the Newtonian potential α = −1, and give a proof of theorem 2. Summary
and discussions are given in section 5. Some algebraic details for section 3.1 are shown in
the appendix.

2. Consequences of conditions (I)–(III)

In this section, we clarify the consequences of conditions (I)–(III) with general masses and
general α, and give prescription of our proof of theorems 1 and 2.

Let us consider the three-body problem in three-dimensional space. Let mi be masses of
bodies i = 1, 2, 3, and let ri (t) and vi (t) be position and velocity vectors of them at time t,
respectively. The moment of inertia with respect to the origin I, the kinetic energy K and the
angular momentum L are defined as follows,

I = 1

2

∑
i

mir2
i (1)

K = 1

2

∑
i

miv2
i (2)
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L =
∑

i

miri × vi . (3)

To treat the power law and logarithmic potentials uniformly, we use the following expression
for the potential energy,

Vα = α−1
∑
i>j

mimj r
α
ij for α �= 0

=
∑
i>j

mimj log rij for α = 0
(4)

where rij represents the mutual distance of body i and j , i.e., rij = √
(ri − rj )2. Note that the

force fi acting on the body i given by

fi = −∂Vα

∂ri

= mi

∑
j �=i

mj (rj − ri )r
α−2
ji (5)

is a continuous function of α and is an attractive force for all α. Non-existence of motions with
constant moment of inertia under repulsive forces is obvious. See the comment on repulsive
force in the end of section 5.

Without loss of generality, we can take the centre of mass to be the origin,∑
i

miri (t) = 0 (6)

the origin of time, t = 0, to be the instant of condition (III), and

r3(0) = 0. (7)

Then the equations for the centre of mass (6), the first derivative of the moment of inertia (1)
with respect to time and the zero angular momentum (3) at t = 0 yield

m1r1(0) + m2r2(0) = 0 (8)

m1r1(0) · v1(0) + m2r2(0) · v2(0) = 0 (9)

m1r1(0) × v1(0) + m2r2(0) × v2(0) = 0. (10)

Using equation (8), let a = m1r1(0) = −m2r2(0). Then the above equations become

a · (v1(0) − v2(0)) = 0 (11)

a × (v1(0) − v2(0)) = 0. (12)

Since (a · b)2 + (a × b)2 = (a2)(b2) holds for arbitrary vectors a and b, equations (11)
and (12) demand a = 0 or v1(0) = v2(0). If a = 0 then ri (0) = 0 for all i = 1, 2, 3 and
the moment of inertia at t = 0 is zero. This contradicts condition (I). Then, we can express
variables at t = 0 as follows,

a = m1r1(0) = −m2r2(0) �= 0 r3(0) = 0 (13)

v1(0) = v2(0) = −u v3(0) = m1 + m2

m3
u. (14)

Therefore, motion under conditions (I)–(III) must be on a plane defined by a and u. Here, it is
well known that the three-body motion with zero angular momentum, condition (II), is always
planar [9, 10]. Using the rotation and the scaling invariance of this system, we can take the



10540 T Fujiwara et al

Cartesian component of these variables as follows,

r1(0) =
(

2m2

m1 + m2
, 0

)
(15)

r2(0) =
(

− 2m1

m1 + m2
, 0

)
(16)

r3(0) = (0, 0) (17)

u = u(cos θ, sin θ) u > 0 0 � θ < 2π. (18)

Then the kinetic and potential energies at t = 0 are given by

K(0) = (m1 + m2)(m1 + m2 + m3)u
2

2m3
(19)

and

αVα(0) = m1m22α + m2m3

(
2m1

m1 + m2

)α

+ m3m1

(
2m2

m1 + m2

)α

for α �= 0. (20)

The second derivative of the moment of inertia with respect to time yields the Lagrange–
Jacobi identity,

d2I

dt2
= 2K − αVα = 2E − (2 + α)Vα for α �= 0

= 2K −
∑
i>j

mimj = 2E −
∑
i>j

mimj − 2V0 for α = 0
(21)

where E represents the total energy E = K + Vα . Thus the condition for the second derivative
d2I/dt2 = 0 yields

K = 2−1αVα for α �= 0

= 2−1
∑
i>j

mimj for α = 0. (22)

Note that the right-hand side of the above equation is a continuous function of α.
Equations (19), (20) and (22) determine the speed u in equation (18) for all α, as follows:

u2 = m3((m1 + m2)(m1 + m2 + m3))
−1

×
(

m1m22α + m2m3

(
2m1

m1 + m2

)α

+ m3m1

(
2m2

m1 + m2

)α)
. (23)

As shown above, conditions I �= 0, dI/dt = 0, d2I/dt2 = 0 and (II)–(III) at t = 0 determine
the initial values with only one parameter θ in equation (18) left undetermined.

Higher order derivatives of I = const,

dn+2I

dtn+2
= −(2 + α)

dnVα

dtn
= 0 for n = 1, 2, 3, . . .

do not produce any more conditions for α = −2. On the other hand, for the case α �= −2 they
give infinitely many conditions. We call these equations at t = 0

dnVα

dtn
(0) = 0 for n = 1, 2, 3, . . . (24)

the consistency conditions because these conditions must be satisfied by the initial values
given above if motion with conditions (I)–(III) is consistent.
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By virtue of the equation of motion, the differential operator d/dt acting on Vα is given
by

d

dt
=

∑
i

vi

∂

∂ri

−
∑

i

m−1
i

∂Vα

∂ri

∂

∂vi

. (25)

Using this expression and the initial values, we can calculate dnVα/dtn at t = 0 up to any
order we want. In the following sections we check the consistency conditions (24), and prove
theorems 1 and 2.

3. The case with three equal masses

3.1. Inconstancy of moment of inertia with equal masses for α �= −2, 2, 4

In this section, we check the consistency conditions (24) with equal masses for α �= −2 and
prove theorem 1.

We take mi = 1 for all i = 1, 2, 3. Then the initial values in (15)–(20) are

r1(0) = (1, 0) r2(0) = (−1, 0) r3(0) = (0, 0) (26)

v1(0) = v2(0) = −u v3(0) = 2u u = u(cos θ, sin θ) (27)

K(0) = 3u2 (28)

Vα(0) = 2α + 2

α
for α �= 0. (29)

From equation (23), the speed u is

u =
√

(2α + 2)/6 (30)

for all α, including α = 0.
Let us check the consistency conditions (24). Since the time reversal of the initial values

(26) and (27) is equivalent to the 180◦ rotation of this system around the origin and exchange
of the index 1 ↔ 2 and the potential Vα is invariant under this transformation, the potential
Vα is invariant under the time reversal, i.e., Vα(ri (−t)) = Vα(ri (t)). Therefore, all odd-order
derivatives at t = 0 vanish

dnVα

dtn
(0) = 0 for n = 1, 3, 5, . . . . (31)

The consistency condition for the second derivative gives

0 = d2Vα

dt2
(0) = 2−1(2 + 2α)(3(α − 2) cos(2θ) − (2 + 2α − 3α)). (32)

If α = 2, this equation is satisfied for all θ . For α �= 2, this equation yields

cos(2θ) = 2 + 2α − 3α

3(α − 2)
= 2α − 22

3(α − 2)
− 1. (33)

Note that the right-hand side is a monotonically increasing continuous function of α, is 1 at
α = 4 and is larger than −1 for all α. Thus, there is no solution of θ for α > 4, i.e., there
are no motions for α > 4. For α � 4 and α �= 2, the angle θ is given by the above equation.
Especially, cos 2θ = 1 for α = 4. Thus, initial values are completely determined for α � 4
and α �= 2.

We can write down the consistency conditions for the fourth and sixth derivatives, applying
the derivative operator d/dt given by equation (25) to Vα four or six times and substituting the
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initial values given above as

d4Vα

dt4
(0) = (2α + 2)f4(α, 2α)

8(α − 2)
= 0 (34)

d6Vα

dt6
(0) = (2α + 2)f6(α, 2α)

32(α − 2)2
= 0 (35)

where

f4(x, y) = x2(128 − 36y + 24y2 + y3) − 2xy(−112 + 62y + 5y2)

+ 8(−32 − 38y + 13y2 + 3y3) (36)

f6(x, y) = x4(6144 + 6496y − 1816y2 + 60y3 + 50y4 + y5)

− 4x3(10496 + 6520y − 3676y2 + 508y3 + 266y4 + 7y5)

+ 4x2(256 − 10288y − 15032y2 + 1952y3 + 1846y4 + 71y5)

− 16x(−5120 − 10840y − 9428y2 − 148y3 + 1186y4 + 77y5)

+ 64(−448 − 1596y − 1860y2 − 299y3 + 204y4 + 30y5). (37)

One can easily verify that α = 2 or 4 are the common roots of f4(α, 2α) = 0 and
f6(α, 2α) = 0. Moreover f4(α, 2α) = 0 and f6(α, 2α) = 0 have another root α = −1.88 . . .

and α = −1.82 . . . , respectively. In the appendix, we prove rigorously the common root of
f4(α, 2α) = 0 and f6(α, 2α) = 0 are only α = 2, 4. Therefore, the existence of motion which
satisfies conditions (I)–(III) with equal masses is not consistent for α �= −2, 2, 4.

3.2. Motions for α = 2, 4

In this section, we give motions explicitly which satisfy conditions (I)–(III) with equal masses
under the potential α = 2 and 4. Then, we discuss the origin of these solutions from general
framework.

For α = 2, equation (30) gives u = 1. The initial values are

r1(0) = (1, 0) r2(0) = (−1, 0) r3(0) = (0, 0) (38)

v1(0) = v2(0) = −u v3(0) = 2u u = u(cos θ, sin θ) (39)

with u = 1. The equation of motion is

d2ri

dt2
(t) =

∑
j �=i

(rj (t) − ri (t)) = −3ri (t). (40)

Here, we have used
∑

i ri (t) = 0. The solution is given by

r1(t) = (cos(
√

3t), 0) − 1
2 r3(t) (41)

r2(t) = (−cos(
√

3t), 0) − 1
2 r3(t) (42)

r3(t) = 2√
3

sin(
√

3t) (cos θ, sin θ) (43)

with arbitrary angle θ . One can easily verify that the moment of inertia is constant
I = 2−1 ∑

i r2
i (t) = 1. Obviously, the shape of this motion is not figure-eight. This is

because figure-eight must have two different periods for major and minor axes, while this
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potential is for an isotropic harmonic oscillator. Since r1 − r2 = (2 cos(
√

3t), 0), the bodies
1 and 2 collide at t = π/(2

√
3) for any angle θ .

For α = 4, the initial values are the same as equations (38) and (39) with u = √
3 and

cos(2θ) = 1. (44)

The motion is therefore one dimensional. We take the angle θ = 0. Motion with θ = π

is equivalent to the time reversal motion of θ = 0. We write ri (t) = (xi(t), 0) and
vi (t) = (vi(t), 0). Initial conditions are

x1(0) = 1 x2(0) = −1 x3(0) = 0 (45)

v1(0) = v2(0) = −
√

3 v3(0) = 2
√

3. (46)

The equation of motion is

d2xi

dt2
(t) =

∑
j �=i

(xj (t) − xi(t))
3 = (xj + xk − 2xi)

(∑
�

x2
� −

∑
�>m

x�xm

)
(47)

with (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2). Since
∑

i xi(t) = 0, this equation is reduced
into [11]

d2xi

dt2
(t) = −9

2
xi


∑

j

x2
j


 . (48)

Therefore, if the moment of inertia is constant I = 2−1 ∑
i x

2
i (t) = 1, the equation of motion

is equivalent to that of a harmonic oscillator

d2xi

dt2
(t) = −9xi. (49)

The solution is given by

x1(t) = 2√
3

sin

(
3t +

2π

3

)
(50)

x2(t) = 2√
3

sin

(
3t − 2π

3

)
(51)

x3(t) = 2√
3

sin(3t). (52)

One can easily verify that the moment of inertia of this solution is constant I = 1, and that the
bodies 1 and 3 collide at t = π/18. Since this motion is one dimensional, this motion is not
figure-eight too.

The origin of the above solutions are as follows [11, 12]. For α = 2, let us consider
three-dimensional motions with general masses mi . The fact that the centre of mass is at the
origin implies

I = 1

2

∑
i

mir2
i = 1

2M

∑
i

mimj (ri − rj )
2 = V2

M
.

Here we write M = ∑
i mi . Then the Lagrange–Jacobi identity (21) yields

d2I

dt2
= 2E − 4MI.
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For α = 4, let us consider one-dimensional motions with equal masses. The situation is
similar due to the identity

1

2


∑

i>j

(xi − xj )
2




2

=
∑
i>j

(xi − xj )
4.

Then the Lagrange–Jacobi identity yields

d2I

dt2
= 2E − 27I 2.

Therefore dI/dt = 0 and d2I/dt2 = 0 is sufficient to prove I = constant for both cases. This
is the reason why higher derivatives of I do not give any conditions for initial values as shown
in section 3.1.

4. The case with general masses for α = −1

In this section, we check the consistency conditions (24) with general masses under the
Newtonian gravity α = −1, and prove theorem 2.

From equation (23), the speed u is given by

u =
√

m3
(
m2

1m
2
2 +

(
m3

1 + m2
1m2 + m1m

2
2 + m3

2

)
m3

)
2m1m2(m1 + m2)(m1 + m2 + m3)

. (53)

And consistency condition for the first derivative gives

0 = dV−1

dt
(0) = −

(
m3

1 − m3
2

)
(m1 + m2)

2(m1 + m2 + m3)u cos θ

4m2
1m

2
2

. (54)

This is satisfied if m1 = m2 or cos θ = 0.
(1) For the case m1 = m2: Let m1 = m2 = m and m3 = µm. Then the speed u becomes

u = 1

2

√
mµ(1 + 4µ)

2 + µ
. (55)

Since m1 = m2, the time reversal is equivalent to 180◦ rotation around the origin and exchange
the index 1 ↔ 2. Therefore V−1(ri (−t)) = V−1(ri (t)) and the consistency conditions for
odd-order derivatives are satisfied dnV−1/dtn(0) = 0 for n = 1, 3, 5, . . . . The condition for
the second derivative gives

0 = d2V−1

dt2
(0) = −8−1m3(1 + 4µ) (5 + 6µ + 6(2 + µ) cos(2θ)) . (56)

This condition is satisfied by the angle

cos 2θ = − 5 + 6µ

12 + 6µ
.

And the condition for the fourth derivative,

0 = d4V−1

dt4
(0) = −m4(1 + 4µ)(−1597 − 1576µ + 432µ2)

384µ
(57)

can be satisfied if

µ = 197 + 14
√

418

108
.
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But the sixth derivative is always negative,

d6V−1

dt6
(0) = − m5

6144µ2
(315165 + 2686088µ + 6911872µ2

+ 4944512µ3 + 443136µ4 + 110592µ5). (58)

Therefore, V−1(t) = const is not consistent in this case.
(2) For the case m1 �= m2 and cos θ = 0: In this case, the time reversal is equivalent to

reflection of the y-axis, y ↔ −y. Therefore V−1(ri (−t)) = V−1(ri (t)) and the consistency
conditions for odd-order derivatives are satisfied dnV−1/dtn(0) = 0 for n = 1, 3, 5, . . . . The
condition for the second derivative gives quadratic equation for m3

0 = d2V−1

dt2
(0) = − (m1 + m2)

(
c2m

2
3 − c1m3 − c0

)
16m3

1m
3
2

(59)

with

c2 = (m1 − m2)
2(m1 + m2)

2(m2
1 + m1m2 + m2

2

)
(60)

c1 = 2m1m2(m1 + m2)
(
m4

1 + m3
1m2 + 3m2

1m
2
2 + m1m

3
2 + m4

2

)
(61)

c0 = m1m2
(
m6

1 + 2m5
1m2 + m4

1m
2
2 − m3

1m
3
2 + m2

1m
4
2 + 2m1m

5
2 + m6

2) > 0. (62)

This condition is satisfied if

m3 =
c1 +

√
c2

1 + 4c0c2

2c2
. (63)

But the fourth derivative has the following form:

d4V−1

dt4
(0) = −3(m1 + m2)

2(p0(m1,m2) + p1(m1,m2)
√

m1m2�)

q(m1,m2)
(64)

where

p0 = 7m22
1 + 74m21

1 m2 + 321m20
1 m2

2 + 955m19
1 m3

2 + 2335m18
1 m4

2

+ 4925m17
1 m5

2 + 9261m16
1 m6

2 + 15383m15
1 m7

2 + 22843m14
1 m8

2

+ 29992m13
1 m9

2 + 35297m12
1 m10

2 + 37102m11
1 m11

2

+ 35297m10
1 m12

2 + 29992m9
1m

13
2 + 22843m8

1m
14
2 + 15383m7

1m
15
2

+ 9261m6
1m

16
2 + 4925m5

1m
17
2 + 2335m4

1m
18
2 + 955m3

1m
19
2

+ 321m2
1m

20
2 + 74m1m

21
2 + 7m22

2 (65)

p1 = 21m16
1 + 136m15

1 m2 + 457m14
1 m2

2 + 1104m13
1 m3

2 + 2049m12
1 m4

2

+ 3284m11
1 m5

2 + 4510m10
1 m6

2 + 5516m9
1m

7
2 + 5830m8

1m
8
2

+ 5516m7
1m

9
2 + 4510m6

1m
10
2 + 3284m5

1m
11
2 + 2049m4

1m
12
2

+ 1104m3
1m

13
2 + 457m2

1m
14
2 + 136m1m

15
2 + 21m16

2 (66)

� = m10
1 + 2m9

1m2 + m8
1m

2
2 + 4m7

1m
3
2 + 9m6

1m
4
2 + 15m5

1m
5
2

+ 9m4
1m

6
2 + 4m3

1m
7
2 + m2

1m
8
2 + 2m1m

9
2 + m10

2 (67)

and

q = 128(m1 − m2)
4
(
m2

1 + m1m2 + m2
2

)3
(m1m2)

2

× ((
m4

1 + m3
1m2 + 3m2

1m
2
2 + m1m

3
2 + m4

2

)
m1m2 +

√
m1m2�

)
. (68)

Thus d4V−1/dt4(0) < 0. Therefore, V−1(t) = const is not consistent in this case too.
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5. Summary and discussions

In this paper, we have solved Saari–Chenciner’s problem: the moment of inertia of the three-
body figure-eight choreography under the attractive potential Vα defined in (4) stays constant
if and only if α = −2. Saari–Chenciner’s problem for α = −1 is a tiny piece of Saari’s
conjecture, because a relative equilibrium of the three bodies yields the non-zero angular
momentum and contradicts the zero angular momentum of the figure-eight choreography. On
the other hand, since Saari–Chenciner’s problem states the motion for all α, it is considered
to be a partial extension of Saari’s conjecture.

Though the three-body figure-eight choreography with α = −2 having constant moment
of inertia [3, 5] is not given analytically, it will be obtained numerically from the set of initial
conditions at t = 0 given in equations (26), (27) and (30), i.e.,

r1(0) = (1, 0) r2(0) = (−1, 0) r3(0) = (0, 0)

and

v1(0) = v2(0) = − 1
2

√
3
2 (cos θ, sin θ) v3(0) =

√
3
2 (cos θ, sin θ).

Here suitable values of θ should be chosen. The analytical method how to determine the values
of θ is not known. If a θ0 gives a figure-eight then −θ0 and π ± θ0 give the same figure-eight.
So we have four θ for one figure-eight. Uniqueness of figure-eight is still unproved.

In order to solve Saari–Chenciner’s problem, we have considered the motion which
satisfies conditions (II) and (III) instead of the three-body figure-eight choreography. The
set of initial conditions of the motion, {r1, r2, r3, v1, v2, v3}, at the instant of condition (III),
t = 0, has been written by only one parameter θ in equation (18). The set has been determined
by conditions (II), (III), I �= 0, dI/dt = 0 and d2I/dt2 = 0 at t = 0.

Since we have considered the motion under conditions (II) and (III), we have obtained
theorem 1 as a by-product. It is applicable to wide class of motion more than the figure-eight
choreography. For example, though the H3 orbit found by Simó [6] is not the figure-eight
choreography because each particle runs in different figure-eight orbit, it satisfies conditions
(II), (III) and I �= 0. Therefore, the H3 orbit cannot have constant moment of inertia by
theorem 1.

Theorem 1 states that there may exist motions for α = 2, 4 other than α = −2. In
connection with Saari–Chenciner’s problem, we have given the explicit solutions for α = 2, 4
and have shown that they are never the figure-eight choreography because they all have
collisions.

If we consider a wider class of interaction potentials other than the power law including
log potential, the figure-eight choreography with constant moment of inertia is possible. For
example, under the artificial potential 1/2 log r −√

8/3r2, we find a three-body choreography
on the lemniscate, a kind of analytical figure-eight. This motion has a constant moment of
inertia [13].

As we noted in section 2, we comment on the non-existence of the motion under the
repulsive potential −Vα for the general mass three-body system for all α. This is almost
obvious but can be proved since equation (21) becomes

d2I

dt2
= 2K + αVα > 0

for α �= 0 and

d2I

dt2
= 2K +

∑
i>j

mimj > 0

for α = 0 by replacing Vα to −Vα .
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For the three-body system with general masses, the same analysis will be possible but it
will become more complex. We then have done the analysis only for the realistic potential,
the Newtonian potential α = −1 and have obtained theorem 2, which states that the motion
having constant moment of inertia is impossible. This is also consistent with Saari’s conjecture.
Though theorem 2 is still a tiny piece of Saari’s Conjecture, it will be extended to arbitrary
α. Actually for the equal mass system we could obtain theorem 1 and could apply it to solve
Saari–Chenciner’s problem. Extension of theorem 2 for all α �= −2 is left for future work.
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Appendix. Common roots of d4Vα/dt4(0) = 0 and d6Vα/dt6(0) = 0

In this appendix, we prove that the common roots of f4(α, 2α) = 0 and f6(α, 2α) = 0 are only
α = 2, 4. Functions f4(x, y) and f6(x, y) are defined by equations (36) and (37).

By the Euclidean algorithm for polynomials of two variables [14], we can find polynomials
L(x, y),M(x, y) and resultant R(y), which satisfy

L(x, y)f6(x, y) − M(x, y)f4(x, y) = R(y). (A.1)

Actually,

L(x, y) = x(268435456 + 5704253440y − 4900519936y2 − 10788732928y3

+ 1665391872y4 − 2044335168y5 − 339308448y6 − 16071552y7

+ 3559728y8 − 160420y9 + 31166y10 + 2482y11 + 31y12)

− 4(67108864 − 2313158656y − 803405824y2 + 6805321728y3

+ 4795789440y4 − 1930678368y5 − 379246848y6 − 11684784y7

+ 1953024y8 + 113414y9 − 4550y10 + 2707y11 + 45y12) (A.2)

M(x, y) = x3(12884901888 + 291051143168y + 129899692032y2

− 865502298112y3 − 665337083904y4 + 113529684992y5

+ 12851181696y6 − 4933789824y7 − 907026720y8 + 25947264y9

+ 2714152y10 − 299016y11 + 79330y12 + 3288y13 + 31y14)

− 2x2(50465865728 + 773060558848y − 95409930240y2

− 2156632178688y3 − 752601498624y4 + 570103937280y5

− 53961508992y6 − 60918928512y7 − 6690174624y8 + 59713360y9

+ 43040792y10 − 1087920y11 + 657030y12 + 33936y13 + 369y14)

+ 8x(14495514624 − 274861129728y − 257627258880y2 + 562210586624y3

+ 1106047222784y4 + 651747223040y5 − 45793043520y6 − 80250740736y7

− 9184728480y8 − 48378720y9 + 67514796y10

− 1554720y11 + 605392y12 + 54856y13 + 715y14)

− 32(1006632960 − 19713228800y − 94432198656y2 − 4409028608y3

+ 275213442304y4 + 281906870976y5 + 33707210784y6

− 29192050368y7 − 4054720752y8 − 83636004y9 + 22319090y10

+ 845634y11 + 17501y12 + 28166y13 + 450y14) (A.3)
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and

R(y) = −512(−16 + y)(−4 + y)4(2 + y)2f (y) (A.4)

with

f (y) = −65536 − 10276864y − 5027392y2 + 25146656y3 + 27552272y4

+ 7538528y5 − 180256y6 − 27646y7 + 944y8 + 21y9. (A.5)

From equation (A.1), it is obvious that common roots of f4(α, 2α) = 0 and f6(α, 2α) = 0 are
roots of R(y) = 0 with y = 2α .

The obvious roots of R(y) = 0 are y = 2α = 4 and 16. The Sturm’s theorem [14, 15]
shows that f (y) = 0 has only one root for y = 2α > 0. Since

f

(
1

2

)
= −697813379

512
< 0

and

f

(
1√
2

)
= 4286363 +

66842265

16
√

2
> 0

the positive root y0 is in the interval 1/2 < y0 < 1/
√

2. Therefore roots of R(2α) = 0 are
α = 2, 4 and α0 with −1 < α0 < −1/2.

But we can show that f4(α, 2α) = 0 does not have root between −1 < α0 < −1/2
as follows. Let us introduce the new variable β = −α, and two monotonically increasing
functions g(+)(β) and g(−)(β),

f4(α, 2α) = 23αg(+)(β) − g(−)(β) (A.6)

g(+)(β) = β2(128 × 23β + 24 × 2β + 1) + 2β(62 × 2β + 5) + 8(13 × 2β + 3) (A.7)

g(−)(β) = 36β2 × 22β + 224β × 22β + 16(16 × 23β + 19 × 22β). (A.8)

If α0 is a root of f4(α, 2α) = 0, β0 = −α0 satisfies g(+)(β0) = g(−)(β0) with 1
2 < β0 < 1.

Since functions g(±)(β) are monotonically increasing functions, we get

g(−)
(

1
2

)
< g(−)(β0) = g(+)(β0) < g(+)(1). (A.9)

But actual values are

g(−)
(

1
2

) = 850 + 512
√

2 > 1566

and

g(+)(1) = 1563.

This is a contradiction.
Thus, we proved that common roots of f4(α, 2α) = 0 and f6(α, 2α) = 0 are only α = 2, 4.
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[7] Simó C 1999 Private communication
[8] Chenciner A 2002 Some facts and more questions about the ‘eight’ Proc. Conf. on Nonlinear Functional

Analysis (Taiyuan) (Singapore: World Scientific)
[9] Wintner A 1941 The Analytical Foundations of Celestial Mechanics (Princeton, NJ: Princeton University Press)

pp 242–8
[10] Siegel C L and Moser J K 1971 Lectures on Celestial mechanics Translated by C I Kalme (New York: Springer)

pp 28–9
[11] Chenciner A 1997 Introduction to the N-body problem Preprint http://www.bdl.fr/Equipes/ASD/preprints/

prep.1997/Ravello.1997.pdf.
[12] Yoshida H 1987 A criterion for the non-existence of an additional integral in Hamiltonian systems with

homogeneous potential Physica D 29 128–42
[13] Fujiwara T, Fukuda H and Ozaki H 2003 Choreographic three bodies on the lemniscate J. Phys. A: Math. Gen.

36 1–10
[14] Takagi T 1930 Lectures on Algebra (Tokyo: Kyoritsu Shuppan) (in Japanese)
[15] Henrici P 1988 Applied and Computational Complex Analysis 1 (New York: Wiley) pp 444–50


